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Abstract— Camera and light detection and ranging (LiDAR)
are frequently used for perception in real-world applications.
The combination of these heterogeneous sensors bring advan-
tages of both kinds of sensors and get accurate and promis-
ing results. The extrinsic calibration of camera and LiDAR
system is a prerequisite for robot perception applications, the
robustness and usability are required in research and industry.
Previous works have provided several extrinsic calibration
methods including target-based works and target-less works.
Although there are many works dealing with calibration of
a monocular camera and a 3D LiDAR, the solutions of the
calibration of the stereo visual system and 3D LiDAR still have
not meet the requirement of the real-world application yet. In
this work, we designed an extrinsic calibration algorithm which
can be used for calibration of a stereo visual system and a 3D
LiDAR system. Our method can estimate extrinsic parameters
between a stereo visual system and a 3D LiDAR with only
one checkerboard pose. We can further improve the result by
a joint non-linear optimization considering LiDAR disparity
constraint using multiple poses.

I. INTRODUCTION

Nowadays, the number of different sensors mounted on
robots is increasing. Different sensors have different char-
acteristics in real-world robotics applications which enable
robots to perceive the environment in challenging situations.
To utilize the advantages of different sensors, the fusion
system of different modalities have been widely applied to
perception, navigation, and mapping applications. The trans-
formation relationship between different sensors is required
for sensor fusion system to align information in a common
coordinate system. Since robot perception applications are
highly relying on the intrinsic parameters and extrinsic
parameters of different sensors, the calibration of multiple
heterogeneous sensors needs to be precise. The calibration
method needs to be robust for different settings and needs
to be convenient and user-friendly.

LiDAR and stereo visual system have different character-
istics. Light detection and ranging (LiDAR) is a range sensor
can obtain accurate range measurements using laser beams.
3D LiDAR uses multiple laser beams to produce precise 3D
point cloud, so it can sense the geometry feature of the
environment. Visual Camera can obtain color and texture
information of the scene. The stereo visual system has two
cameras which can capture 3D information of scene based
on feature matching between two cameras. To utilize the
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advantages of the stereo visual system and the 3D LiDAR,
we need to calibrate these two different sensors.

The research focusing on this problem, however, is limited.
Although there are some works focusing on the extrinsic
calibration of 2D LiDAR and stereo visual system and
some works focusing on the calibration of 3D LiDAR and
monocular camera, there are very few works dealing with
extrinsic calibration between a stereo visual system and 3D
LiDAR. Among these works, some methods [1], [2], [3], [4]
exploit mutual information between different sensors. Some
methods [5], [6], [7] use special designed calibration target.
And some works [8], [9], [10], [11] use a checkerboard
which is common to users as the calibration target. We
also choose checkerboard as our calibration target because it
enables us to calibrate the intrinsic and extrinsic parameters
of the stereo visual system and LiDAR simultaneously.

To tackle the extrinsic calibration problem, we need to
find constraints between the stereo visual system and 3D
LiDAR to find the geometry relationship between these
two different sensors. The plane of checkerboard has been
used as geometry constrained in the extrinsic calibration of
a 2D LiDAR and a camera. They calculate the extrinsic
parameters only by plane correspondences which require 3
poses as a minimum number. Line correspondences and point
correspondences are also explored in many works on the
extrinsic calibration of a 2D LiDAR and a camera. To reduce
the minimum number requirement of poses, we obtain 3D
line and plane correspondences according to 4 boundaries
of checkerboard and 1 plane of the checkerboard. We can
estimate 2D line and 3D plane feature on the image based
on the line detection algorithm and intrinsic parameters of
the camera. 3D line feature on the image is calculated by the
intersection of the back-projected plane of 2D line extracted
from the image and the 3D plane of the checkerboard
extracted from the feature points on the checkerboard and
the intrinsic parameters of the camera. We can estimate 3D
line and 3D plane feature based on LiDAR point cloud using
the RANSAC[12] algorithm to eliminate outliers. Using 1
plane correspondence and 2 of 4 line correspondences, we
can estimate extrinsic parameters of a monocular camera and
a 3D LiDAR with one pose using a close-formed solution.
After calibrating each single cameras with 3D LiDAR, we
globally optimize extrinsic parameters with LiDAR disparity
constraint by non-linear optimization.

The contribution of this paper can be summarized as:

1) Extend extrinsic calibration of a monocular camera and

a 3D LiDAR [13]to extrinsic calibration of a stereo
visual system and a 3D LiDAR.



2) We reduce the minimum requirement of poses from
3 to 1 by utilizing 3D correspondences of lines and
planes. The system can be extended to extrinsic cali-
bration of multi-camera and multi-LiDAR system.

3) We introduce LiDAR disparity constraint to improve
the result with multiple poses by non-linear optimiza-
tion.

4) We develope an extrinsic calibration software in C++
with high efficiency and robustness.

II. RELATED WORKS

There are different methods purposed to solve multiple
sensors calibration problem, here we will talk about related
works according to different problem categories about the
camera to LiDAR calibration.

For the monocular camera to LiDAR calibration problem,
there are different types of approaches based on different cor-
respondences. Some methods do not rely on the calibration
target. In [14] and [4], they make use of mutual information
between LiDAR reflectivity and camera intensity to do the
extrinsic calibration outdoors without a calibration target. In
[15] relies on PnP algorithm [16] using manually selected
points correspondences. In [17], the deep neural network is
applied on extrinsic calibration to solve this problem by end-
to-end training.

Some methods use a rectangle calibration target such as
a checkerboard. [8] uses a checkerboard to do extrinsic
calibration between a perspective camera and a 2D Li-
DAR, they use the plane-line correspondence established
by LiDAR points on plane and plane parameters estimated
in the camera coordinate system, their algorithm requires
at least 5 poses to get the extrinsic parameters. [9] use
plane-plane correspondence established by estimating plane
parameters from 3D LiDAR and camera to estimate initial
rotation matrix and translation vector, then they use non-
linear optimization to refine the result by minimizing point to
plane distance. Their method needs at least 3 poses. Instead
of using one checkerboard, [10] uses several checkerboards
in front of sensors to do the extrinsic calibration with one
pose, which avoids moving checkerboards. Methods based on
plane constraint can be easily extended to the multi-sensors
system, [11] calibrate the extrinsic parameters between an
omnidirectional camera and a 3D LiDAR. When estimating
plane parameters from the image and 3D LiDAR, a plane
from a farther distance cannot be estimated as precisely as the
plane from a closer distance. [13] can do extrinsic calibration
between a camera and 3D LiDAR using lines and planes
correspondences in one pose.

Some methods rely on specifically designed calibration
target. In [5], arbitrary trihedron is used to estimate the
extrinsic parameters with 2 poses. [6] uses a discontiguous
calibration target to emphasize 2D LiDAR information to
estimate extrinsic parameters between a camera and a 2D
LiDAR. In [7], the v-shaped target is used to utilize the
boundary of the target captured by LiDAR. These works
use the target with a specially designed pattern to exploit
the boundary information. The boundary information can be

detected by LiDAR and visual system as correspondences,
which can reduce the number of poses required for extrinsic
calibration.

For the stereo camera to LiDAR calibration problem,
[18] calibrate a 3D LiDAR and a stereo visual system
using inertial measurement unit (IMU). With the help of
inertial data, they used a bright spot as the only calibration
target. Their framework can be extended to the multi-camera
network. In [19], a board with circular hole pattern is used
to calibrate a 3D LiDAR and a stereo visual system. The
circular hole pattern can be detected in camera frame and
LiDAR frame robustly. In [20], the paper presents an ex-
trinsic calibration algorithm between a stereo vision system
and a 2D LiDAR-based on the 3D reconstruction of the
checkerboard. They use 3D corner points of checkerboard
obtained by stereo camera system to do triangulation, solve
least-square estimation of the 3D plane of checkerboard and
use non-linear optimization to optimize extrinsic parameters.
[21] used the particle swarm optimization algorithm (PSO) to
estimate extrinsic parameters and fuse information of a stereo
camera and a LiDAR without the aid of another calibration
target. [22] proposed a method to calibrate a 2D LiDAR and
a multi-camera system, it decouples the problem into two
hierarchical level optimization problem without using any
calibration target.

Comparing to the above works, our method utilizes 3D
planes and lines correspondences between camera and Li-
DAR, we use checkerboard to extract the plane and boundary
of checkerboard both from camera and LiDAR. Considering
there will be some cases that intrinsic parameters of the
camera are unknown, the checkerboard can be used to
estimate intrinsic parameters at the same time. The boundary
of the checkerboard can be extracted easily because of the
visual feature and reflectance feature of the checkerboard. To
consider the stereo visual system and 3D LiDAR globally,
our method refines the initial optimization result according
to the geometry constraint of the stereo visual system which
leads to the better result.

III. METHODS
A. Problem Formulation

This section will describe the formulation of the extrinsic
calibration problem of a stereo visual system and a 3D
LiDAR. The extrinsic calibration of a stereo visual system
and a 3D LiDAR is to estimate the relative rotation and
translation between two cameras and the 3D LiDAR. The
relationship of the three sensors is shown in Fig. 1. We use
R, as the coordinate system of the left camera, R¢, as
the coordinate system of the right camera, and R} as the
coordinate system of the 3D LiDAR.

For camera system, we will do intrinsic calibration to
both cameras to get the intrinsic parameters of cameras and
undistort image by estimated distortion coefficients by the
method described in [8] Then we can model both cameras
by pinhole camera model. We denote K as the intrinsic
matrix of the left camera and K2 as the intrinsic matrix
of the right camera. The points in left camera coordinate
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Fig. 1. Sensors Relashionship

system are presented as P¢" : (X1 Y1 Z%) € R, | and
points in right camera coordinate system are presented as
P : (X, Y, 7%) € R, . The pixels of points in left
camera image can be described as (z1,y*1). The pixels of
points in right camera image can be described as (z¢2,y?).
The relationship between the camera coordinate system and
camera image frame can be described as below.

KOplr — yC1 AL (1)

KOpC: — yCz 7C2 )

For LiDAR system, we convert the distance from the
direction of each scan points in polar coordinates obtained by
3D LiDAR to the form of Cartesian coordinates as PL € R3.

For extrinsic parameters, we decouple the transformation
relationship between cameras and 3D LiDAR as rotation ma-
trix R?,RZ? € SO(3) and t§*,t5> € R?. Let (RS, t5")
and (R$2,t52) be the relative rotation matrix and translation
vector of left camera to 3D LiDAR and right camera to 3D
LiDAR. Let (Rg’;‘, tg?) be the relative rotation matrix and
translation vector from the left camera to the right camera.
The relationship of three sensors can be described as below:

PC = RO'PE 4+t (3)
P = R{*PL +t0> 4)
@ = RGP+t 5)

For ith pose, we extract 3D plane features from both
cameras and 3D LiDAR. The 3D plane parameters in cam-
eras are described as [n<';d""] and [n&2;d%2]. n n?
represent the normal vector of the plane in the camera frame,
d®*,d? represent the distance from the plane to the origin

of the camera coordinate system. The 3D plane parameters in
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Fig. 2. Notation of plane and line parameters

LiDAR are described as [n¥; dl]. nF represents the normal
vector of the plane in the LiDAR frame, d’ represents the
distance from the plane to the origin of the LIDAR coordinate
system. For any point (X1,Y1,7;) € R%l that lie on plane
i in left camera , any point (Xo, Y5, Z5) € R3C that lie on
plane ¢ in right camera, point (X;,Y;, Z;) € R} that is the
centroid point of plane ¢ in 3D LiDAR,
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For the ith pose, we also extract 3D line features from both
cameras and 3D LiDAR. The the jth 2D line in left camera
and right camera are described as lgl, 12 which contains
image-space coordinates of starting points and ending points.
The the jth 3D plane in left camera and right camera are
denoted as [d ", p{!] and [d?, p ], where d{ !, dC2 € R?’
are derections of 3D lines in both cameras and p” ,p”
R3 are points lie on 3D lines in both cameras. We use ACl
and AC;Q to represent the projection matrix (I — dC1 (dcl) )
and (I—d{?(d?)7).

The jth 3D line in 3D LiDAR can be described as
[df5, pfs]. where d; is the direction of the 3D line and p;
is the centroid of points lie on the 3D line. We denote the
kth point lie on the jth 3D line in 3D liDAR as Qlj x> and
the mth point lie on the jth 3D plane in 3D LiDAR as PZ .
In ¢th pose, the number of points on the plane is denoted as
N;, the number of points on the jth boundary is denoted as
K;j.



In this paper, Licjl, Ll-cf and LZLJ represent the jth line
in the 7th pose of two cameras and 3D LiDAR, Tl'iC ', 7riC 2
and 71 represent plane in the ith pose. The plane and line
parameters are also illustrated in Fig. 2. We use - to represent

the dot product.

B. System Description

We implement the extrinsic calibration algorithm of the
stereo visual system and the 3D liDAR in C++. We will
discuss the structure of the calibration software. The basic
structure of the system is shown in [Fig].

To use this software, users need to use ROS [23] to record
several bags containing images from both cameras and point
clouds from 3D LiDAR. If intrinsic parameters of both cam-
eras are not provided, users need to place the checkerboard in
different positions to make sure that all image area is covered
by different positions to get accurate intrinsic parameters.
The point cloud and images will also be used to calibrate the
extrinsic parameters. Users record images and point clouds
for several seconds in rosbag at each position. Users need to
provide a cuboid in LiDAR coordinate system which contains
the checkerboard to help locate the checkerboard in the point
cloud. Then this information are regarded as the input of the
system.

Firstly, the system will use intrinsic calibration [8] built-
in OpenCV [24] to calibrate the intrinsic parameters of
both cameras using images containing checkerboard, then
undistorted images will be stored in a folder for further
processing.

In the second step, stereo calibration in OpenCV will be
used to obtain initial extrinsic parameters of both cameras.

In the third step, 3D planes and lines feature from both
cameras and 3D LiDAR are extracted. LSD method [8] is
used to extract 2D lines from images, and plane parameters
in cameras are estimated using checkerboard features. 3D
planes in 3D liDAR are estimated by RANSAC [25], the 3D
lines in 3D planes in LiDAR frame are also estimated by
RANSAC after denoising.

In the fourth step, we use the SVD method to give out the
initial guess of extrinsic parameters between each camera
and the 3D liDAR.

In the fifth step, we utilize the LiDAR disparity con-
straint to refine the extrinsic calibration result globally by
Levenberg-Marquardt algorithm[26].

C. Feature Extraction of Calibration Target

In this section, we will introduce the steps of feature
extraction in detail.

1) Planes and Lines Extraction from Camera: We will
consider feature extraction in cameras, without loss of gen-
erality, we will discuss it in the left camera.

The 3D plane parameters [nic1 , dicl} can be computed by
homography using checkerboard. After extracted all 2D lines
by LSD[27] method, we can extract several line segments on
the four boundaries of the checkerboard. After line fusion, we
can get starting points and ending points [(xs, Ys), (Te, Ye )]
of a line. A sample result of 2D boundary detection is shown

Fig. 3. Planes and Lines from Camera

Fig. 4. Planes and Lines from 3D LiDAR

in Fig. 3. We can get back-projected 3D plane of the line
which is the plane containing the 3D line and origin of R,
as [Ko, - ([rs,ys, 1]7 X [z, s, 1]7); 0]. Then we can get the
3D plane parameters by the intersection of the back-projected
3D plane and the 3D plane.

2) Planes and Lines Extraction from 3D LiDAR: For 3D
LiDAR, we use user-provided cuboid to help locate the
checkerboard in the point cloud. The 3D plane parameters
can be computed by using the RANSAC algorithm to extract
points on the checkerboard plane. Then we can filter points
on scanlines according to the length of the consecutive
segments to get a refined point cloud of the plane.

After getting the point cloud of the plane, we apply line
fitting on each scanline to filter out outliers by RANSAC.
And we can obtain the left boundary and right boundary of
the checkerboard from the starting points and ending points
on the scan lines of the plane point cloud.

In the last step, we split the left boundary and right
boundary into four boundaries from detecting the turning
point of the boundary, and we use line fitting again to filter
out outliers to get the final 3D line parameters. The example
result of planes and lines extraction is shown in Fig. 4.

D. Extrinsic Calibration of a Stereo Camera and a 3D
LiDAR

In this section, we will describe the geometry constraints
and extrinsic calibration algorithm of a stereo camera and a
3D LiDAR.
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Fig. 5. Geometric Constraints

1) Geometric Constraints: The geometric constraints are
illustrated in Fig. 5.

For line pairs (L{}}, L) and (L{?, LL), there are follow-
Ing constraints:

R{'d} =d' (9

R{*d; =di? (10)
(I-di (di))RTQf, —pi +t7) =0 (1D
(I-d(di?))(RE2 Qi — P +t32) =0 (12)

For plane pairs (7, 1) and (7", 1), there are follow-

ing constraints:

R nf = n$ (13)
R$2nl = nf> (14)
CROPL, T — d?l =0 (15)
O REPL A7) —d? =0 (16)

In Eq. (9) (10), we use a rotation matrix between the Li-
DAR frame and the camera frame to transform the direction
vector of the line from the LiDAR frame to the camera frame.

In Eq. (11) (12), we use rotation matrix and translation
vector between the LiDAR frame and the camera frame to
project Q[ which is one point on L; to the camera frame

as Q g %> then connect it with p;; to forrn the vector. And
we use projection matrix (I — dC(dC) ) to project it to the
vector from Q' g & to the line LC This vector should have
zero length since the projected point Q’ ;% should be also
on the line LS— in the camera frame.

In Eq. (13) (14), we use a rotation matrix between the
LiDAR frame and the camera frame to transform the normal
vector of the plane from the LiDAR frame to the camera
frame.

In Eq. (15) (16), we use rotation matrix and translation
vector between the LiDAR frame and the camera frame to
project PL  which is one point on 7% to the camera frame
as P’} , then project it on the normal vector n$’ and minus
dic to get the distance to the plane 7¢. Since the projected

point P .m should be also on the plane 7¢ in the camera
frame, that distance to the plane ¢ should have zero length.

2) Extrinsic Calibration from one pose: Using the above
geometric constraints, [13] proves that we can compute the
relationship between a 3D LiDAR and a monocular camera
using 2 pairs of non-parallel line correspondences and 1 pair
of plane correspondence with one pose. For the extrinsic
calibration of a stereo visual system and 3D LiDAR, we can
calibrate the 3D LiDAR with each camera to get the extrinsic
parameters of the whole system.

3) Extrinsic Calibration from multiple poses: We can get
a more accurate result using multiple poses. [13] introduced
the extrinsic calibration method between a camera and a 3D
liDAR from multiple poses using non-linear optimization.
We can also formulate our problem as a non-linear opti-
mization problem by minimizing line reprojection error and
plane reprojection error from the 3D liDAR to the 3D camera
to refine the extrinsic calibration result. And we can utilize
LiDAR disparity constraint obtained by stereo calibration of
the stereo visual system to optimize the extrinsic parameters
globally.

Firstly, we minimize the following cost function to solve
the initial RS* and RY?:

RC1 = arg min Z Z ||Rcld dg-l I? + ||RglnzL
=1 j=1
(I7)
R02 = arg min ZZ ||R02d dg"’IIQ + ||R€2nzL
i=1 j=1
(18)

As described in [28], the above problem can be solved by
Singular Value Decomposition(SVD). We can define:

M- = [nl dk, ... dY,, .. nk,dk,, ... dY (19)
M = n$ d5, .. d$, . nS,dSy, L, dSY] (20)
M = [nf2 d$7,...,d%, ..., nS2,dR, .., dSE] 1)
Using SVD, we can get
MEMOHT = U s, v (22)
ME(M)T = U, 5,V (23)

Then, the rotation matrix Rgl and R% can be solved by
closed-form solution:

R = ViU
RS? = V,UY

(24)
(25)

To get intial translation vector t 1 and t%, we need to
utilize Eq. (11) (12) (15) (16). We denote PL as the centroids
of the planes PL in the LiDAR frame, Q as the entroids of
the planes Q;7 in the LiDAR frame. Usmg above definitions
and constralnts we can have
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" t9 = & ROPE 4 S (26)
n$? - t%? = —nf* . R?PF + d5” 27)
AT = —ATH(R{'Q) - pit) (28)
AT = —ATX(R{*Qf — pi?) (29)

We can solve this least-square problem to get a closed-
form solution of tgl and t%.

After having the initial rotation matrices Rcl, RgQ and
the translation vectors tgl , t%, we can solve a non-linear op-
timzation problem by Levenberg-Marquardt algorithm[26].

Considering Eq. (11) (12) (15) (16) as constraints, we can
formulate following cost function terms which describe the
constraits between 3D LiDAR and the cameras:

N
1
c c c c c
ey = Z ﬁanz L(REPL, 7Y —d)?

=1
N 4 K
300 73 IAG RS Qb v + 4
K. ij L Rijk — Pyj L
i=1j=1"" k=1
(30)
N
Co __ 1 Cs CoplL Co Cs 12
of* =) - Inf* - REPL, + (%) —df|
=1 "
N4 Kij
Co(p C C C.
Y0 2 IAGFREQE, i+t
i=1j=1""" k=1
(31)

We jointly optimize two pairs of extrinsic calibration pa-
rameters between each camera and 3D LiDAR by minimizing
the following cost function:

Ca

Ci ROz +C1 4 C
(RL Rt 67) = L (32)

R

arg min egl +e

C1 RpC2 4C1 (C2
Rp%t  tp

Lo

Extrinsic calibration of a stereo visual system has been
explored by many researchers, we can obtain acure extrinsic
parameters including rotation matrix and translation vec-
tor between two cameras using multiple images containing
checkerboard. We adopt method [29] to calibrate two cam-
eras to get accurate extrinsic parameters (Rgf,tgf) of the
stereo visual system.

Since the extrinsic calibration between a camera and
a 3D LiDAR has estimation error, we can use LiDAR
disparity constraint to consider this estimation error with
stereo calibration result. This LiDAR disparity constraint
is illustrated in Fig. 6. We project the point cloud of the
checkerboard plane {PZ } in the LiDAR frame to the
left camera frame as {RS'PL + t§'} using estimated
(RS, t5"). Then we project {RY'PL 4 t5'} to right
camera frame as {Rg? RSPE +t9) + tgf tusing stereo
extrinsic parameters (Rgf,tgf) obtained by stereo camera
calibration. This projected point cloud has disparity com-
pared to {R(Lj2 PL + t(LJQ} projected from LiDAR frame to

Fig. 6.

LiDAR disparity constraint
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Fig. 7. Joint Optimization

right camera frame using (Rg2 , tgg). This LiDAR disparity
can be described as

N N;
| M

c Co rCipL c c

ec: = Z A Z [Ra: (R Py, +t11) + 662
=1 m=1

~ (REPE, + 7))

(33)

Combining LiDAR disparity constraint with Eq. (11) (12)
(15) (16) we can joinly optimize the extrinsic parameters
by minimizing the following cost function which is also
illustrated in Fig. 7:

(&1 Ca 1C1 O\ _ : C1 Ca C1
(R7R72,t71,t72) = ) argrmcn ; e;' +er’ +epl
RL17RL27tL17tL2

(34)

Since the measurement error of the grid size of the
checkerboard will influence the extrinsic calibration result of
a camera and 3D LiDAR, [13] introduced similarity trans-
formation to replace the rigid transformation. We also apply
similarity transformation to extrinsic calibration between a
stereo visual system and 3D LiDAR.

We introduce a scale factor s to refine the scale factor for
the laser beam of the 3D LiDAR which is used for getting
actual distances of points. After getting initial Rg ' and RSZ



in the same way, we can solve the linear system which is
showed as below to get initial s, tgl and th.

@t 4 n@  ROPLs = & (35)
&2t +n? RPPLs = —df? (36)
AT+ ATRIQLs = Afp (37)
A%t% + Az'cf R? Qij AC2 pzf (38)

To refine the result, the cost function without considering
the LiDAR disparity constraint is showed as below:

(S,Rgl,R€2,tgl,tg2) = arg min

C1 R%2 {C1 {C2
R, VR 26,06,
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(39
the cost function considering LiDAR disparity constraint
is showed as below:
(s, Rgl , Rgz, tgl , tgz) = arg min
Rfl,Rf2 7tfl ,tf2

Y1
Dl GREPE 40 -
=1 7
N 4 1 Ku
2D 7 > IAG GRE QL — pt + 1)
i=1 =1 " =1
Y1
D0 I GREPE, 4 657) —
i=1" "
N 4 1 Kij
c c c c
2D 7 > IATGREQE, — pi + 7))
i=1j=1""" k=1
NN
c c c
D 2 IRG (SR PE, +t74) + £
i=1 """ m=1
— (sRE*PL, + 7))

(40)

Then we also jointly optimize the extrinsic parameters by
minimizing the cost function using the Levenberg-Marquardt
algorithm to refine the result.

IV. EXPERIMENTS AND RESULTS

To evaluate our method, we compare our method to
Unnikrishnan’s method [9] which only used the plane in-
formation to calibrate a camera and a 3D LiDAR. Our
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Fig. 9. Reprojection Error of the Stereo Calibration

experiment uses a Velodyne VLP-16 LiDAR (16 scan lines,
+3cm range error, 360° horizontal field of view and +15°
vertical field of view)and a ZED stereo camera(1280 x 720
resolution) to evaluate our method.

We use stereo calibration with 35 poses to get accurate
extrinsic parameters (Rgf , tgi) of the stereo visual system.
The poses of the checkerboards are showed in Fig. 8. The
reprojection error of the stereo calibration is shown in Fig.
9.

To evaluate methods, we estimate the extrinsic
parameters between each camera and 3D LiDAR
(RS, t57), (RS2,t52), then calculate the relative pose
from left camera frame to right camera frame using these
two transformation. For similarity transformation, we will
regard it as the rigid transformation when we calculate the
error.

To evaluate the transformation error between the estimated
transformation (f{, t) and the groundtruth transformation
(R,t), we use Ht“;Htlh as the translation error and the angle-

axis representation of RR! [30] as the rotation error.
We collected 30 pairs of LiDAR point clouds and images
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Fig. 10. Mean Rotation Error of rigid transformation, compare between our
method without LiDAR disparity constraint and Unnikrishnn’s algorithm[9]

to do our evaluation, we choose N € [1, 23] randomly from
them for our method, and N € [3,23] for Unnikrishnan’s
method. We run the experiment 200 times for each N &€
[2,25]. We estimate extrinsic parameters for all 30 poses for
N =1.

The comparison of our method and Unnikrishnan’s method
is shown in Fig. 10 and Fig. 11. In this comparison ex-
periment, we both use rigid transformation without using
LiDAR disparity constraint to calibrate each camera with
3D LiDAR. The results show that our method significantly
outperforms Unnikrishnan’s method. And the results prove
that our method can provide accurate extrinsic calibration
result even with one pose.

We compare the result of rigid transformation and simi-
larity transformation in different ways. Firstly, we use one
pose to calibrate each camera with 3D LiDAR using rigid
transformation and similarity transformation without using
LiDAR disparity constraint. Secondly, we back-project the
point cloud of the checkerboard plane from the LiDAR frame
to the camera frame. The fusion result is showed in Fig. 12.
We can observe from the fusion result that the similarity
transformation provides a more accurate result that the rigid
transformation.

We also show that the LiDAR disparity constraint can
improve the extrinsic calibration result significantly by com-
paring the performance of rigid/similarity transformation
with/without LiDAR disparity constraint. And the result
shows that similarity transformation gives more improvement
in translation estimation than rotation estimation. The rota-
tion error and translation error is showed in Fig. 13 and Fig.
14.

V. CONCLUSIONS AND FUTURE WORKS

Using line and plane correspondences, we can use fewer
(even one) poses to get more accurate extrinsic calibration
result of a stereo visual system and 3D LiDAR. Using
LiDAR disparity constraint, we can improve results with
multiple poses significantly. We show that similarity trans-
formation which does not require measurement of grid size
of checkerboard can have more accurate result than rigid

\ —our rigid transformation
\ —Unnikrishnan rigid transformation|
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Fig. 11. Mean Translation Error of rigid transformation, compare be-
tween our method without LiDAR disparity constraint and Unnikrishnn’s
algorithm[9]

Fig. 12.  Back-projection of the point cloud of the checkerboard plane
using extrinsic parameters obtatined from our rigid transformation method
without LiDAR disparity constraint(red) and our similarity transformation
method without LiDAR disparity constraint(green). Both methods use one
pose.

——rigid transformation

—similarity transformation

|-+ stereo rigid transformation with LIDAR disparity constraint
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Fig. 13. Mean Rotation Error of our method: rigid/similarity transformation
with/without LiDAR disparity constraint
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Fig. 14. Mean Translation Error of our method: rigid/similarity transfor-

mation with/without LiDAR disparity constraint

transformation. We implemented a calibration toolbox in
C++ with high efficiency and accuracy. In the future, We will
extend the calibration framework to multi-sensor calibration
problem including intrinsic and extrinsic calibration.
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