
FENet: Fast Real-time Semantic Edge Detection Network

Yang Zhou1, Rundong Ge1, Gary McGrath2, and Giuseppe Loianno1

Abstract— Semantic edge is a geometric-aware semantic
feature that can be leveraged in robotic perception systems
for increased situational awareness and high-level environment
understanding. This sparse representation nicely encapsulates
the semantic information (object categories) within the geomet-
ric object boundaries. State-of-the-art semantic edge detection
approaches require significant computation power and fail
to approach real-time performance on embedded devices for
robotic applications. In this paper, we present FENet (Fast Real-
time Semantic Edge Detection Network), a semantic edge detec-
tion approach for robots with Size, Weight, and Power (SWaP)
constraints. Specifically, we adopt MobileNetV2 as a lightweight
backbone network, and we utilize joint pyramid upsampling to
improve the system performance. We further reduce the model
complexity and latency through network pruning and multiple
upsampling strategies to adapt the model on embedded devices
such as NVIDIA Jetson TX2. The proposed method is evaluated
on Cityscapes with accuracy performances close to the state-of-
the-art methods, but with substantially reduced computational
complexity that speeds up the network by a factor of 10. To the
best of our knowledge, FENet is the first real–time semantic
edge detection network for robotic platforms.

I. INTRODUCTION

Semantic perception is crucial to increase robots’ situa-
tional awareness and high-level environment understanding
by providing a compact and lightweight geometric and
semantic environment representation as shown in Fig. 1. This
facilitates missions’ execution in complex and unstructured
environments by enabling robots to navigate in various
outdoor and indoor settings and solve complex tasks such
as inspection, environment mapping, and search and rescue.
Semantic scene understanding can also be beneficial in
human-robot interaction to increase the operator’s awareness
of environment regions containing relevant object categories.

In the past decades, different levels of scene understand-
ing, including object detection and semantic segmentation,
have been explored by the computer vision and robotics
communities. Recently, semantic edge as a semi-dense se-
mantic representation started to gain attention. Semantic
edge provides pixel-wise category information on object
boundaries, which produce semi-dense scene understanding
as shown in Fig. 1. CASENet [1] formulated the task
as a multi-label problem by associating each pixel with
multiple semantic categories, which represent the intersection
of object boundaries. Other works [2], [3], [4] improved the

This work was supported by Qualcomm Research, the ARL grant DCIST
CRA W911NF-17-2-0181, and the Technology Innovation Institute.

1The authors are with the New York University, Tandon School
of Engineering, Brooklyn, NY 11201, USA. email: {yangzhou,
rundong.ge, loiannog}@nyu.edu.

2The author is with Qualcomm Technologies, Inc., 5775 Morehouse
Drive, San Diego, USA. email: gmcgrath@qti.qualcomm.com.

Fig. 1: From top to bottom: DFF (ResNet-50), DFF (Mo-
bileNetV2), FENet (ours). Semantic edge maps on KITTI
dataset are produced by the network trained on Cityscapes
dataset without any finetuning. Our real–time network shows
competitive performances compared to existing methods.

performance by introducing different alignment mechanisms
and feature fusion strategies. Moreover, [5] stepped further
to provide an instance-level semantic edge representation.

There are several key advantages provided by semantic
edge detection compared to other semantic representations.
First, semantic edge provides an ideal data association with
semantic information and geometric edge representation,
which can lead to semantic-geometric consistent semi-dense
mapping for search and rescue tasks. Second, semantic edges
provide more details on the objects’ boundary, which is
crucial for accurate localization and mapping as well as plan-
ning. Third, since the edges often belong to several different
categories, the multi-class nature of semantic edges provides
useful uncertainty property for robotic applications, which
is relatively hard to obtain by post-processing semantic
segmentation results. Overall, these properties clearly show
the advantage of this compact but meaningful geometric-
semantic representation for robotic systems in complex sce-
narios such as monitoring and search and rescue.



The current state-of-the-art methods are computationally
expensive and rely on large backbone networks such as
ResNet-50 and ResNet-101. These require high-end GPUs
which are generally not available on robotic platforms pre-
venting to obtain real-time performance. This is necessary in
robotics to deal with real-time control and planning. To the
best of our knowledge, there is no prior work addressing the
efficiency of semantic edge detection. Without a lightweight
approach, it is infeasible to deploy this approach in real-
world settings on computationally constrained robots.

In this work, we propose the first lightweight semantic
edge detection network with a reasonable balance between
efficiency and performance. This paper presents multiple
contributions. First, we employ a MobileNet-V2 based en-
coder to extract features, and we improve the efficiency of the
multi–scale adaptive weight fusion module by optimizing the
memory access operation. Second, inspired by FastFCN [6],
we introduce a joint pyramid upsampling module to improve
the algorithm performance on embedded devices. Finally,
we further compress the encoder network by adopting Ne-
tAdapt [7] to reduce the inference time and the number of
parameters. We also propose two different variants of the
network to address the latency issue and memory usage.
FENet approaches real–time performance on NVIDIA Jetson
TX2 with 320× 320 resolution image.

The paper is organized as follows. In Section II, an
overview of the state of the art semantic segmentation
approaches is provided. Section III introduces the strategy
to obtain real–time semantic edge segmentation. Section IV
presents extensive results on open-source datasets. Section V
concludes the work and presents multiple future scenarios.

II. RELATED WORKS

A. Semantic Edge Detection

Category-aware edge detection was first proposed in [9]
assigning semantic class to each boundary pixel. The au-
thors used an inverse detector to fuse top-down detector
information and bottom-up edge information. CASENet [1]
instead formulated the problem by associating the multi-class
label with each boundary pixel. CASENet fused the low-level
feature maps with the last high-level feature maps to produce
category-aware semantic edges. Semantic edge has been used
as well in different applications. VLASE [10] employed
semantic edges to achieve on-road localization for vehicles.
UPI-Net [11] further applied semantic edge detection in
medical ultrasound image analysis. Dedge-AGMNet [12]
introduced depth edge, which is a binary semantic edge of
instance-sensitive as a feature of the stereo matching branch
to improve the performance of stereo depth estimation.
PEN [5] blended the instance-level object detection with the
detected semantic edge to generate an instance-level edge
map. To improve the accuracy of semantic edge detection,
SEAL [2] formulated a probabilistic model to align edges
using latent variable optimization. However, in this approach,
it is very time-consuming to align ground truth edges and
learn semantic edge simultaneously. STEAL [3] reasons the
annotation noise during training and enforces the network

to predict the edges along with the normal directions by a
novel network layer and loss function. This approach can
produce sharper edge prediction results and can be used to
refine the dataset’s noisy annotations. DFF [4] proposed an
adaptive weight fusion module to adjust the weight of feature
maps from different levels according to the input image
and locations, which improved the performance significantly.
Recently, [13] presented a joint multi-task learning method
for semantic segmentation and semantic edge detection,
which utilized a novel spatial gradient fusion to suppress
unrelated edges.

However, all the aforementioned works rely on deep back-
bone deep convolution networks, which are computationally
expensive and memory consuming. These aspects prevent
deploying them on embedded robotic platforms with SWaP
constraints. In this work, we propose a lightweight semantic
edge network. Our approach presents reduced latency and
computational complexity, while obtaining comparable per-
formance and accuracy with respect to existing state-of-the-
art approaches as shown in Fig. 1.

B. Efficient network for platforms with SWaP constraints
Efficient network design has been explored widely in

prior works. The goal of the efficient network structure
is to reach an ideal trade-off between accuracy and ef-
ficiency. SqueezeNet [14] used 1 × 1 convolutions with
squeeze and expansion operations to reduce the number
of parameters. MobileNetV1 [15], which was proposed for
image classification, is comparable to VGG-16 [16] with a
substantially reduced number of parameters. To achieve this
result, MobileNetV1 utilized depthwise separable convolu-
tion. MobileNetV2 [8] further reduced the amount of compu-
tation resources with respect to MobileNetV1 by introducing
inverted residuals block and linear bottlenecks. To maximize
the channel information, ShuffleNet [17] proposed group
convolution and channel shuffle operations, which reduce
the computation while exploiting the potential of channels.
ShuffleNetV2 [18] employed point-wise group convolution
instead of group convolution and proposed to evaluate the di-
rect metric on target platform instead of considering FLOPs.

We adopt MobileNetV2 as lightweight backbone network
to speed up the feature extraction module which takes, in the
semantic edge detection, most computation resources.

III. METHODOLOGY
A. Network Architecture Overview

The overview of the network architecture is illustrated
in Fig. 2. We design a lightweight backbone based on
MobileNetv2 [8] in order to keep real–time performance.
The feature extraction module extracts features from multiple
levels. The joint pyramid upsampling module upsamples the
high–level feature maps utilizing information from the last
three feature maps. We use deconvolution to upsample these
edge maps to the original resolution, and we propose as well
two different upsampling strategies to recover the original
resolution and reducing latency and memory consumption.
The adaptive weight fusion learns the fusion weight of multi–
level features and produces the final semantic edge map.



Fig. 2: FENet Network Structure: convolution layer (yellow block), bottleneck module from MobileNetV2 [8] (orange
block), batch normalization layer (red block), bilinear upsampling module followed by convolution layer (purple block),
separable convolution (yellow block), deconvolution layer (blue block), duplication of upsampled edge map (black block),
and summation operation (green block). In FENet-fast, the deconvolution is substituted by bilinear sampling. In FENet-small,
bilinear sampling only upsamples to half size, and recover the full resolution with an additional bilinear upsampling.

B. Feature extraction module
To enable the network to run in real-time on embedded de-

vices such as NVIDIA Jetson TX2, we employ a lightweight
feature extraction module based on MobileNetV2 backbone
to extract feature maps from different stages of the encoder.
Although ResNet-50 and ResNet-101 are commonly used
in other semantic edge detection, these backbone networks
can hardly execute real–time semantic segmentation with
320 × 320 resolution images. MobileNetV2 uses depthwise
separable convolutions, which require less computation than
standard convolutional layers. For example, the computation
cost of a depthwise separable convolution is only 12%
compared to a 3 × 3 standard convolution. In addition,
shortcuts are also used between bottlenecks to improve
gradient propagation across multiple layers.

The first convolution layer uses a 3-by-3 convolution with
stride 2 to downsample the input image at the starting stage.
In the robotic system’s mobile embedded platform, the GPU
memory or shared memory condition is critical because
it has to be shared with other real–time modules as well
(planning, control, and mapping). Apart from the limited
memory condition, doubling the size of feature maps will
also lead to a quadratic increment of execution time [19].
Since the resolution of the last layer of feature maps is small,
and it contains fewer location information than previous
layers of feature maps, we follow the design of CASENet [1]
to generate edge maps from the first, second, third, and
fifth stages (according to the size of feature maps) using
a convolution as the encoder. The channel sizes of the edge
maps from the first three stages are 1, and the channel size of
the edge map from the fifth stage is the number of semantic
categories. These low-level edge maps will guide the final
semantic-aware edge map by providing rich location and
detailed information to generate sharp semantic edges.

C. Joint pyramid upsampling module

To enlarge the feature map of the last layer to compensate
for information loss during upsampling, we introduce a joint
pyramid upsampling module shown in yellow in Fig. 2,
which was first proposed by FastFCN [6]. We consider the
feature maps from the last three stages as the input of the
joint pyramid upsampling module to generate a multi–scale
feature with the same size of the feature map as the third
feature map. In this application, this operation will double the
size of feature maps to be passed to the next module. Initially,
each feature map goes through a convolution layer with the
same channels. Then each feature map is upsampled to the
final size layer and concatenated together. The ensembled
features are processed by four separable convolutions with
dilation rates 1, 2, 4, and 8 and 1/4 channels of the
ensembled feature map. The final multi–scale feature map
of the joint pyramid upsampling module is obtained by
concatenating these four feature maps.

The joint pyramid upsampling module builds a multi–scale
feature map with a larger size compared to the fifth stage
one. This stage embeds the location information from the
third and fourth feature maps into the semantic-aware feature
map and speeds up the upsampling procedure.

D. Upsampling Strategies

In Fig. 2, we use deconvolution to upsample edge maps to
the original resolution. However, the embedded platform has
generally limited computation resources, memory size, and
speed. To further address the SWaP constraints, we propose
two different upsampling strategies. The feature map con-
sumes a substantial amount of memory and computational
resources with deconvolution, especially when the upsample
scale factor is large, requiring large kernel deconvolution. For
example, the deconvolution layer after the fifth feature map



of a MobileNetV2-based DFF needs to use a 32× 32 kernel
to upsample by 16 times. Bilinear upsampling requires no
extra parameter, and this simple operation is easy to compute
even without the GPU’s support. The first variant FENet-fast
uses a bilinear upsampling operator instead of deconvolution
in the network. The parameter size of the network is not
the only metric related to the memory issue. The forward
memory size is a crucial metric for the embedded platform
such as NVIDIA Jetson TX2, which only has 8 GB of
memory shared across CPU and GPU. Therefore, we propose
a second variant FENet-small, which only upsamples the
feature map to half of the original resolution before the final
fusion module. The original resolution size is upsampled at
the last step. FENet- small substantially reduces the forward
memory size as shown in Section. IV-D.

E. Memory-friendly adaptive weight fusion module

DFF [4] first proposed the adaptive weight fusion module
(light blue block in Fig. 2). After using the deconvolution
layer to upsample edge maps from stage 1, 2, 3, and
multi–scale edge maps from the joint pyramid upsampling
module, DFF follows CASENet to use shared concatenation
to share low–level feature maps with semantic–aware feature
map of different classes. However, the operation of shared
concatenation is expensive in terms of memory resources and
access. In this work, to avoid this expensive operation, we
utilize the idea of weighting. Let us denote K as the number
of classes, H as the height, and W as the width. We duplicate
these three low-level edge maps with 1×H×W channel by
K times and concatenate them with the semantic-aware edge
map, which has K ×H ×W channels. After obtaining the
4K ×H ×W -channel features, we follow the design of the
original adaptive fusion module to generate 4K ×H ×W -
channel weight maps from the multi-scale feature map using
convolution layers. To be noticed, the result 4K ×H ×W -
channel map needs to be reordered to K × 4 × H × W
after multiplying the concatenated 4K × H × W -channel
feature with the adaptive weight maps. Finally, summation
operation across the second channel can produce the final
semantic edge map with channels of K×H ×W . Applying
channel duplication instead of shared concatenation increases
the cache hit rate and improve the speed by 20.8%.

F. Loss Function

The network is trained with the same re–weighted cross-
entropy loss introduced by CASENet [1], where Yk is the
predicted edge probability of class k, Yk is the binary edge
ground truth of class k, p represents the pixel location, and
γ is the non-edge pixels percentage

L =
∑
k

Lk =
∑
k

∑
p

{
−γYk(p) logYk(p)

−(1− γ)
(
1−Yk(p)

)
log (1−Yk(p))

} (1)

We combine the result of loss function on the fifth–level
feature and the final edge maps with the same weight to get
the final training loss.

G. Network Pruning

The efficiency of the proposed network can be further
improved by network pruning, which removes redundant
parameters according to the task’s characteristics to solve
the over-parameterized issue. From the perspective of weight,
the approach presented in [20] used L1–norm of the filters’
weight to identify redundant parameters. From the activation
perspective, [21] removed filters according to the average
percentage of zeros in the activation. However, these two
works are not guided by direct metrics on the target device.
We perform network pruning on the encoder network using
NetAdapt [7], which builds a latency table of each layer on
target device to remove filters in a greedy strategy. After
the whole network is trained, NetAdapt removes redundant
filters in each iteration until the target latency is reached. It
generates proposals that reduce filters in each layer. After
fine–tuning them with few epochs, the best one in terms of
accuracy-resource trade–off is adopted in the next iteration.
The algorithm ends once the target latency is reached. The
pruned model is further fine–tuned for better accuracy.

IV. EXPERIMENTAL RESULTS

A. Implementation

We implement our proposed method in PyTorch with the
support of synchronized batch normalization [22]. We evalu-
ate our methods on fine–annotated subsets of Cityscapes [23]
dataset, which includes 2975 training samples, 500 valida-
tion samples, and 1525 test samples. We treat all training
samples as the training set, and all validation samples as
the test set since semantic segmentation ground truth of
test samples are not provided. We generate semantic edge
ground truth following the methods in CASENet [1]. We
employ 640 × 640 image resolution to train our network.
Various data augmentation strategies are applied in our
method: we resize the image with a scaling factor from
0.75 to 2 randomly, and we also apply random mirroring
and random cropping. We test our network with an original
image resolution of 2048×1024. We pre–train our backbone
network on ImageNet [24] first. Subsequently, we train the
network for 200 training epochs by employing the SGD
optimizer. The base learning rate of the backbone network
and other modules are 0.08 and 0.8. We train the network
with synchronized batch normalization with batch size 8. The
selected learning policy is polynomial learning rate decay
with 0.9 decay weight. This training strategy is applied to
all the experiments for a fair comparison.

B. Evaluation

We adopt the evaluation protocol in SEAL [2], which is
stricter than other protocols [1], [9]. This protocol matches
the raw predictions with unthinned ground truths in addi-
tion to matching the thin predictions with thinned ground
truths. We set the matching distance tolerance to 0.0035
for the Cityscapes dataset. We use two metrics to evaluate
our method’s performance: maximum F-measure at optimal
dataset scale (MF-ODS) [25] and average precision (AP).



Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Mean
CASENet 54.58 65.44 67.75 37.97 39.93 57.28 64.65 69.38 71.27 50.28 73.99 72.56 59.92 66.84 35.91 56.04 41.19 46.88 63.54 57.65
STEAL 90.86 78.94 77.36 43.01 42.33 71.13 75.57 77.60 81.60 56.98 87.30 83.21 66.79 91.59 45.33 66.64 46.25 52.07 74.41 68.89

DFF (ResNet-101) 37.85 66.65 65.28 42.36 44.81 52.34 60.27 71.58 70.67 49.22 79.12 71.68 60.57 57.53 51.03 66.58 45.23 49.20 63.42 58.18
DFF (ResNet-50) 29.30 53.41 58.35 31.68 38.49 35.56 64.56 50.72 64.37 49.40 68.83 53.11 58.01 24.91 31.63 55.17 32.06 47.49 58.71 47.67

DFF (MobileNetV2) 40.73 58.11 57.77 36.15 35.09 40.49 54.64 56.43 61.08 47.33 58.79 58.99 47.07 38.37 13.55 34.01 9.75 28.87 52.91 43.69
FENet (Ours) 35.28 48.89 55.62 37.29 38.40 35.48 53.96 55.20 59.12 46.92 53.43 51.65 49.36 31.92 22.75 46.50 23.16 38.59 52.03 43.98

TABLE I: AP score (%)
Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Mean

CASENet 87.06 75.95 75.74 46.87 47.74 73.23 72.70 75.65 80.42 57.77 86.69 81.02 67.93 89.10 45.92 68.05 49.63 54.21 73.74 68.92
SEAL 87.6 77.5 75.9 47.6 46.3 75.5 71.2 75.4 80.9 60.1 87.4 81.5 68.9 88.9 50.2 47.8 44.1 52.7 73.0 69.1

STEAL 88.94 78.21 77.75 50.59 50.39 75.54 76.31 77.45 82.28 60.19 87.99 82.48 70.18 90.40 53.31 68.50 53.39 56.99 76.14 71.42
DFF (ResNet-101) 89.24 79.23 79.6 52.25 55.12 78.78 76.4 79.25 82.47 60.80 86.67 81.99 72.92 85.43 57.17 71.72 51.21 60.18 75.64 72.42
DFF (ResNet-50) 88.37 78.38 77.85 47.64 52.11 81.33 79.63 78.90 82.57 61.93 88.37 81.13 73.05 83.64 51.26 69.26 44.00 57.41 75.28 71.16

DFF (MobileNetV2) 85.86 75.64 73.83 43.80 44.39 74.20 68.68 74.22 80.19 57.59 84.95 75.58 58.98 81.30 23.98 43.58 21.03 39.69 69.49 61.95
FENet (Ours) 86.92 76.58 75.15 47.34 47.93 78.14 68.06 74.86 80.72 59.62 86.68 77.67 65.97 81.24 34.69 51.51 34.33 57.41 70.55 65.66

TABLE II: MF-ODS score (%)
Method Params (M) FLOPs (G) Madds (G) Forward Size(M) MF-ODS (%) Latency (ms) Frequency (Hz)

DFF (MobileNetV2) 6.854 2.329 9.602 415.88 61.95 77.2 12.95
FENet 2.459 2.684 10.307 440.48 65.66 29.91 33.43

FENet (pruned) 2.243 2.481 9.913 378.22 63.04 28.5 35.08
FENet-fast 0.888 2.684 5.278 440.48 64.78 8.84 113.12

FENet-small 0.888 1.289 2.534 233.54 62.28 8.72 114.68

TABLE III: Ablation Study. The latency is tested on NVIDIA Jetson TX2 with TensorRT in Python.

Fig. 3: Qualitative comparison of multiple semantic edge detection approaches on Cityscapes.

C. Quantitative Result

To evaluate the performance of our approach with respect
to the state of the art semantic edge detectors, we compare it
to CASENet [1], SEAL [2], STEAL [3], and DFF [4]. These
methods are based on ResNet-101, which is a large backbone
network. To establish a fair comparison, we also compare
our method with DFF method with ResNet-50 and Mo-
bileNetV2 backbone network. The AP score results and MF-
ODS score are illustrated in Table I and II respectively. The
MobileNetV2 backbone has similar performance compared
to ResNet-50 and ResNet-101 backbone, which strikes a
good balance between performance and speed. However, the
AP score of MobileNetV2-based DFF on some categories,
which rarely appears in the dataset such as Truck, Train,
and Motorcycle drops significantly compared to the large
backbone network due to the small capacity of the network.

FENet is superior to MobileNetV2-based DFF from the
aspect of mean AP (+0.29%) and mean MF-ODS (+3.71%)
scores. It outperforms MobilNetV2-based DFF for most cate-
gories on MF-ODS metric. The AP score of FENet has much
better performance than MobileNetV2-based DFF on rare
categories such as Truck, Train, and Motorcycle. In Fig. 4,
we benchmark the methods’ speed on a NVIDIA Jetson TX2
platform. The experiments use MAX-N mode which has the
highest GPU frequency (1.3 GHz) and CPU frequency (2
GHz). We optimize all methods by TensorRT for NVIDIA
Jetson TX2. We use a batch size of one and 32-bit floating
point precision to evaluate the throughput. State-of-the-art
methods barely reach 2 Hz. FENet and its variants reach
real-time performance while keeping competitive results.

D. Ablation study

We conduct an ablation study focusing on the model
size and latency. In Table. III, we compare two variants of
our model with the baseline method, which is the DFF with
MobileNetV2 as the backbone network. Comparing the result
of MobileNetV2-based DFF and FENet, the joint pyramid
upsampling module improves the MF-ODS score signifi-
cantly by embedding high-level feature maps with multi-
scale features. The latency is dramatically reduced as well
by introducing the joint pyramid upsampling module. The
size of the output feature map of this module is two times
the fifth-level feature map of the feature extraction module.
It reduces the kernel size of the deconvolution layer, which
is known to be a computational expensive operation for large
kernels, and used to recover the resolution of feature map to
original size from 32× 32 to 16× 16. Therefore, the latency
can be reduced to the level of real–time performance. To
be noticed, the FLOPS and Madds of FENet are higher than

Fig. 4: Speed Benchmark.



MobileNetV2-based DFF since the joint pyramid upsampling
module introduces extra computation. However, we argue
that the metric of latency on embedded platforms is more
important than FLOPs and Madds to evaluate the methods’
speed. We also evaluate the variant FENet-fast, which is 8.7
times faster than MobileNetV2-based DFF. FENet uses the
bilinear upsampling instead of deconvolution. This variant
has much fewer parameters, which were due to large kernel
deconvolution and is ideal for devices even slower than
NVIDIA Jetson TX2 solving the critical latency issue.

To address the memory issue, we first use NetAdapt to
prune the network to reduce the forward memory size by
14% comparing to FENet. However, pruned FENet still
requires too much memory for resource-limited embedded
robotics devices as shown in Table III. The robotic system
has to run multiple tasks simultaneously, and tasks are
competing to use the device’s memory. FENet-small has the
lowest parameter size, FLOPs, Madds, and latency among all
the methods. FENet-small reduces the forward memory size
(actual memory usage of the network and feature map) by
47% with a 3.38% loss of Maximum F-measure at Optimal
Dataset scale (MF-ODS) comparing with FENet, making it
ideal for the memory-critical devices.

V. CONCLUSION

We proposed the first real-time semantic edge detection
network for SWaP constraints robots. We achieved this result
by leveraging (a) the use of a lightweight MobileNetV2
backbone, (b) multi-scale features, and (c) a joint pyramid
upsampling module. We optimize the network on NVIDIA
Jetson TX2 using TensorRT, and further reduce the parameter
size by adopting the NetAdapt pruning technique. The results
show that our method has comparable performance with
respect to existing approaches while being real–time. We
provide two variants of the method to address the latency
issue and forward memory size. This enables to fit our
approach to extremely constrained computation resources.

Future works will leverage the semantic/geometric sparse
representation in a real–time semi-dense visual odometry or
SLAM system to boost localization and mapping perfor-
mances. Finally, we would like to investigate semantic edge
detection and depth estimation multi–task learning.

REFERENCES

[1] Z. Yu, C. Feng, M.-Y. Liu, and S. Ramalingam, “CASENet: Deep
Category-Aware Semantic Edge Detection,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5964–
5973.

[2] Z. Yu, W. Liu, Y. Zou, C. Feng, S. Ramalingam, B. V. K. Vijaya Ku-
mar, and J. Kautz, “Simultaneous Edge Alignment and Learning,” in
The European Conference on Computer Vision (ECCV), 2018, pp.
388–404.

[3] D. Acuna, A. Kar, and S. Fidler, “Devil is in the Edges: Learning Se-
mantic Boundaries from Noisy Annotations,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[4] Y. Hu, Y. Chen, X. Li, and J. Feng, “Dynamic Feature Fusion for
Semantic Edge Detection,” IJCAI International Joint Conference on
Artificial Intelligence, vol. 2019-Augus, pp. 782–788, 2 2019.

[5] Y. Hu, Y. Zou, and J. Feng, “Panoptic Edge Detection,” arXiv preprint,
vol. arXiv:1906, 6 2019.

[6] H. Wu, J. Zhang, K. Huang, K. Liang, Y. Deepwise, and A. I.
Lab, “FastFCN: Rethinking Dilated Convolution in the Backbone for
Semantic Segmentation,” in arXiv preprint arXiv:1903.11816, 2019.

[7] T.-J. Yang, A. Howard, B. Oc H E N, X. Zhang, V. Sze, and
H. Adam, “NetAdapt: Platform-Aware Neural Network Adaptation
for Mobile Applications,” in The European Conference on Computer
Vision (ECCV), 2018, pp. 285–300.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 4510–4520.

[9] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Se-
mantic contours from inverse detectors,” in Proceedings of the IEEE
International Conference on Computer Vision, 2011, pp. 991–998.

[10] X. Yu, S. Chaturvedi, C. Feng, Y. Taguchi, T. Y. Lee, C. Fernandes,
and S. Ramalingam, “VLASE: Vehicle Localization by Aggregating
Semantic Edges,” in IEEE International Conference on Intelligent
Robots and Systems. Institute of Electrical and Electronics Engineers
Inc., 12 2018, pp. 3196–3203.

[11] H. Qi, S. Collins, and J. A. Noble, “UPI-Net: Semantic Contour
Detection in Placental Ultrasound,” Proceedings - 2019 International
Conference on Computer Vision Workshop, ICCVW 2019, pp. 416–
424, 8 2019.

[12] W. Yang, “Dedge-AGMNet: A Robust Multi-task Learning Network
for Stereo Matching and Depth Edge Detection,” in European Con-
ference on Artificial Intelligence, 8 2020.

[13] M. Zhen, J. Wang, L. Zhou, S. Li, T. Shen, J. Shang, T. Fang,
and L. Quan, “Joint Semantic Segmentation and Boundary Detection
Using Iterative Pyramid Contexts,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 13 666–13 675.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size,” arxiv preprint, vol. arXiv:1602,
2 2016.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications,” CoRR,
vol. abs/1704.0, 4 2017.

[16] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in International Conference on
Learning Representations (ICRL), 9 2015, pp. 1–14.

[17] X. Zhang, X. Zhou, and M. Lin, “ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2018, pp. 6848–6856.

[18] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design,” in The European
Conference on Computer Vision (ECCV), 2018, pp. 116–131.

[19] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for Real-Time
Semantic Segmentation on High-Resolution Images,” in The European
Conference on Computer Vision (ECCV), 2018, pp. 405–420.

[20] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network Trimming:
A Data-Driven Neuron Pruning Approach towards Efficient Deep
Architectures,” in arXiv preprint arXiv:1607.03250, 7 2016.

[21] Y. He, “Channel Pruning for Accelerating Very Deep Neural Net-
works,” in The IEEE International Conference on Computer Vision
(ICCV), 2017, pp. 1389–1397.

[22] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal, “Context Encoding for Semantic Segmentation,” in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 7151–7160.

[23] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, B. Schiele, D. A. R&d, and T. U. Darmstadt,
“The Cityscapes Dataset for Semantic Urban Scene Understanding,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 3213–3223.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition, 3 2010, pp.
248–255.

[25] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color, and texture cues,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 5, pp. 530–549, 5 2004.


	Introduction
	Related works
	Semantic Edge Detection
	Efficient network for platforms with SWaP constraints

	Methodology
	Network Architecture Overview
	Feature extraction module
	Joint pyramid upsampling module
	Upsampling Strategies
	Memory-friendly adaptive weight fusion module
	Loss Function
	Network Pruning

	Experimental results
	Implementation
	Evaluation
	Quantitative Result
	Ablation study

	Conclusion
	References

